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Continuous Latent Variables

Deep Generative Model

Goal
Define a model pZX (z , x |θ) = pX |Z (x |z , θ)pZ (z) where the observational
model pX |Z=z is parameterised by a neural network.

This time, Z takes on values in an uncountable set Z ⊆ RD (in other
words, Z is a continuous random variable).

We fix pZ for simplicity.
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It is possible to have pZ depend on θ.

It is possible to extend Z such that it is a collection of continuous random
variables (e.g., a sequence of variables in RD), this is useful, for example,
for modelling time-series.

It is possible to introduce deterministic predictors. For example,
pYZ |X (y , z |x , θ) = pY |ZX (y |z , x , θ)pZ |X (z |x , θ). This is useful for tasks
where we map an input to an output (e.g., image/text classification, table-
to-text generation, image-to-text generation, text-to-image, etc.)

Once we learn all about the basic building block on the slide we will com-
ment on such extensions.



Continuous Latent Variables

Challenge

As before, for parameter estimation, we aim to maximise the log-likelihood
of θ given a dataset of observations D:

L(θ|D) =
∑
x∈D

log pX (x |θ)

but, as we do not observe assignments of Z for each X = x , we need to
perform marginal inference

pX (x |θ) =

∫
Z
pZX (z , x |θ)dz

which is intractable due to the nature of Z and the complexity of the
observational model.
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Even though we are able to assign density to any joint assignment (z , x),
we cannot solve the marginal: it is impossible to enumerate the infinitely
many values z ∈ Z, and thus impossible to evaluate all necessary joint
densities which would be required for exact marginalisation.

As before, we will need approximate inference.



Continuous Latent Variables

Motivation

Before we go ahead and develop a solution, let’s discuss why we might
want to model with unobserved continuous variables:

Inductive bias (e.g., a hierarchy of steps that promotes certain
patterns to be captured or that is amenable to inspection).

Expressiveness: the marginal pX of pZX is typically (but not always)
more expressive than the conditional pX |Z=x .

Controllable generation: generating from pX |Z=z for z sampled from
pZ |X=x generates data that are related to a seed x (at least in latent
space, but ideally also in data space).

Uncertainty: models that predict their own uncertainty are models
whose parameters are continuous random variables (check the BNN
module).
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Inductive bias: consider an image generator, the API exposed by the model
is a sampler, you give it an empty canvas and it fills in pixels in some order
until the canvas is full; there’s no way to tell the model what kinds of
images we would like to see; if we design a model that starts from a latent
code drawn from the 2-dimensional real coordinate space we we can tell
the generator ‘give me an image that lives in the top-right quadrant’, those
might be semantically very different from images generated from the top-
left quadrant while being similar to other images also reachable from the
top-right quadrant.

There are other reasons for modelling with continuous latent variables,
these are some that come to mind. Can you think of other reasons?



Continuous Latent Variables

An example: sequence generation

A language model (LM) is a distribution over the sample space of
sentences in a language.

Ideally, a language model is a tractable distribution. That is,

it assigns tractable-to-compute probability pX (x |θ) to an observation
x = 〈x1, . . . , xn〉;
we would know how to sample random sequences from the LM.

If the language has finite vocabulary, we may choose to model observations
through an autoregressive factorisation of the joint distribution:

Xi |X<i = x<i ∼ Cat(f (x<i ; θ))

and note this would satisfy both desiderata.
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Let Σ stand for the vocabulary of a language of interest. Then the sample
space of a random sequence X is a set X ⊆ Σ∗. Each step of a sequence
is a random variable Xi that takes on values in Σ.

If an LM factorises autoregressively (i.e., from left-to-right without Markov
assumptions)

p(x |θ) =
n∏

i=1

p(xi |x<i , θ)

and its conditional distributions Xi |X<i = x<i are known (both pmf and
cdf) then we can always assess the probability mass of an observation and
we can always sample random sequences (i.e., via ancestral sampling).

We use x<i to denote a prefix sequence, typically empty for i = 1. Though
some prefer to think that x<i contains a beginning-of-sentence symbol at
a fictitious 0th position (this position does not count towards the length
of the sequence).

Can you see why the statistical model we propose requires the vocabulary
of the language to be finite?



Continuous Latent Variables

A rather general model of sequences

Built upon an exact factorisation of the joint probability

x0

x1 x2 x3

θ

p(x |θ)=

|x|∏
i=1

p(xi |x<i , θ)

p(x |θ)=

|x|∏
i=1

Cat(xi |f (x<i ; θ))

There’s not big challenge for MLE, since every variable is observed and the
pmf is differentiable wrt θ.

Deep Learning 2 @ UvA Continuous LVMs 5 / 59

• Let’s say we start from a deterministic beginning-of-sentence symbol
x0, which we condition on to get a distribution X1|〈x0〉.

• From which we can sample the first word x1. We extend the
observed prefix by this word and obtain another conditional
distribution, namely, X2|〈x0, x1〉.

• From which we can sample the second word x2. We repeat that
process obtaining X3|〈x0, x1, x2〉.

• From which we sample x3. Let’s suppose this is some
end-of-sentence token, whose presence triggers the end of the
generation process.

• This model assigns probability p(x |θ) =
∏|x|

i=1 p(xi |x<i , θ) to x .

• If we model with a finite vocabulary, each cpd is a Categorical
whose parameter we predict with a neural network (e.g., an LSTM,
a Transformer).

• If we were modelling a sequence of pixels, we would pick an
appropriate cpd (e.g., Bernoulli for binary pixels, Categorical for
256-valued pixels, Continuous Bernoulli, etc.) and the architecture
for parameterisation (e.g., MADE, PixelCNN).
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Continuous Latent Variables

Are all sentences born equal?

The typical LM, illustrated previously, is also known as an autoregressive
model. It factorises the probability of a sequence one element at a time
without making Markov assumptions (i.e., with no conditional
independence assumptions).

Every sentence x drawn from this LM conditions on the exact same
information (either nothing or just a beginning-of-sentence symbol).

There’s no explicit mechanism to structure the probability space in any
particular way. That is, there is no partitioning of the sample space into
groups of outcomes.
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Continuous Latent Variables

Are there two Donalds?
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f (x<i = Perhaps Donald met with; θ)
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Generating from this LM will generate sentences about the politician and
about the Disney character roughly as often. And indeed our dataset
contained roughly the same number of sentences about Donal Trump and
Donald Fauntleroy Duck, with a slight win for the real-world Donald.

How can we get the model to disentangle two Donalds?

• One answer might be: give me more context! Indeed there are
people going that way. Some famous NN LMs condition on ever
longer excerpts of text called prompts.

• But I gave you a prompt. It reads Perhaps Donald met with.
Betting that prompts will grow more and more specific to the point
that the conditional Xi |X<i = prompt will become deterministic is
betting on overfitting, or betting on the memory of your model, or
betting on the patience of your user (someone must be writing
these prompts, right?).

Think about this: conditional autoregressive models power applications
such as image captioning, machine translation, and summarisation. The
prompt in these models is the input predictor (image, source sentence,
collection of documents). Would you say that for a given input, there is
only one output (caption, translation, summary) that is reasonable?



Continuous Latent Variables

Conditioning

1 Augment the distribution with unobserved factors z

2 Generate x conditioned on z
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We can partition the probability space as to disentangle these two confus-
able celebrities.

We do that by positing more structure (a hierarchy of stochastic steps)

Z ∼ N (0, ID)

Xi |Z = z ,X<i = x<i ∼ Cat(f (z , x<i ; θ))

where for example I introduce D Gaussian-distributed latent factors. Note
that the observational model pX |Z=z for a given z is the autoregressive
component we saw earlier, but it now starts from an assignment of Z .

• Some factors are all about politics. That is, the conditional
X |Z = z assigns high probability to sentences about politics when
they are generated from z in a certain subset of RD . If D = 2,
perhaps politics maps from the bottom-left quadrant.

• Some factors are all about Disney cartoons. That is, X |Z = z ′

assigns high probability to sentences about Disney cartoons when
they are generated from z ′ in another subset of RD . If D = 2,
perhaps cartoons map from the top-right quadrant.

• Marginally, we recover the exact distribution we expected:
politicians and Disney characters are about as likely to follow.
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Latent variable LMs

With latent variables we can model the data as draws from a complex
marginal, which ‘mixes’ (simpler) conditionals from different points in
space

pX (x |θ) =

∫
pXZ (x , z |θ)dz =

∫
Z
pZ (z)pX |Z (x |z , θ)dz

=

∫
Z
pZ (z)

n∏
i=1

pX |ZH(xi |z , x<i , θ)dz

Good training can lead to considerable amount of structure in the posterior

pZ |X (z |x , θ) =
pZ (z)pX |Z (x |z , θ)

pX (x |θ)
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A joint distribution pXZ (x , z |θ) = pZ (z)pX |Z (x |z , θ) describes a stochastic
mapping from latent space to data space. The conditional X |Z = z can
exploit statistical dependencies (think intuitively as correlations) in data
space, and thus map certain patterns in data space to certain patterns in
latent space. For example, certain lexical correlations we usually think of
as topical could be more pronounced in data space whenever we sample
from a specific subset of RD .

If this structure exists, it exists in the joint distribution. Then, the posterior
distribution is our way to appreciate such structure. It is the mechanism
to inspect what kind of patterns the model exploits. These patterns are
data-driven and they need not be self-evident. Sometimes inspection can
suggest that our latent variables capture topical or syntactic patterns, for
example, but properly controlling for that is a different story, one that we
can only begin to discuss after we learn how to model with latent variables.

Remember: the true posterior is nothing but a consequence of the joint
distribution. In other words, we do not predict true posteriors indepen-
dently, rather, we predict joint distributions and infer posteriors once we
are given some observations.



Continuous Latent Variables

Summary

Modelling with latent variables

Inductive bias

Expressiveness

Control

Uncertainty

Challenge: marginal inference is intractable (affects parameter estimation),
posterior inference is intractable (limiting our ability to explore properties
unique to LVMs).

Approach: once again, we will turn to variational inference.
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Neural Variational Inference

Back to our original running example: document model

z

x θ

n

|D|

Generative story of a document x = 〈x1, . . . , xn〉

Draw a document embedding Z ∼ N (0, ID)

Paramaterise a Categorical distribution
and draw n words Xi |Z = z ∼ Cat(f (z ; θ))

Designing the generative network

h = tanh(W1z + b1)

f (z , θ) = softmax(W2h + b2)

θ = {W1, b1,W2, b2}
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We will take a unigram document model as an example model.

• The prior over D-dimensional document embeddings is a standard
Gaussian. We denote the prior by p(z |α).

• The observational model is Categorical and fully factorised. We
could have used an autoregressive model, but we’ll leave that as
exercise.

• Any parameterisation will do as long as we predict a valid
Categorical parameter

– e.g., a single-hidden layer FFNN with softmax output
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Neural Variational Inference

Document Model - Conditional

z

x θ

n

|D|

Generative story of a document x = 〈x1, . . . , xn〉
Draw a document embedding Z ∼ N (0, ID)

Paramaterise a Categorical distribution
and draw n words Xi |θ, z ∼ Cat(f (z ; θ))

Conditional pmf

p(x |z , θ) =
n∏

i=1

p(xi |z , θ)

=
n∏

i=1

Cat(xi | f (z ; θ)︸ ︷︷ ︸
=π

)

=
n∏

i=1

πxi
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The pmf we prescribe is clearly tractable. That is, for a given x , z , we can
assess p(x |z , θ) without trouble.
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Neural Variational Inference

Document Model - Marginal

z

x θ

n

|D|

Generative story of a document x = 〈x1, . . . , xn〉
Draw a document embedding Z ∼ N (0, ID)

Paramaterise a Categorical distribution
and draw n words Xi |Z = z ∼ Cat(f (z ; θ))

Marginal pmf

p(x |θ) =

∫
p(z)

n∏
i=1

p(xi |z , θ)dz

=

∫
N (z |0, I )

n∏
i=1

Cat(xi |f (z ; θ))dz
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The marginal pmf is intractable.

If the model was constrained to a specific length n, then the marginal would
be a distribution over strings of length n, and therefore a Gibbs distribution
would fit the bill. However, we cannot assess its parameter, since it takes
marginalising Z out. Interestingly, whereas Xi are independent given z ,
that is, they are independent in the conditional, they are all dependent on
one another in the marginal. In this case, the latent variable model leads to
a marginal distribution that is more structured (i.e., captures correlations)
than the conditional (which is fully factorised).
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Neural Variational Inference

Document Model - Posterior

z

x θ

n

|D|

Generative story of a document x = 〈x1, . . . , xn〉
Draw a document embedding Z ∼ N (0, ID)

Paramaterise a Categorical distribution
and draw n words Xi |Z = z ∼ Cat(f (z ; θ))

Posterior pmf

pZ |X (z |x , θ) =
pXZ (x , z |θ)

pX (x |θ)
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As a consequence of having an intractable marginal, we have an intractable
posterior. Moreover, in this case, we have no clue what the posterior family
is.

Since the prior N (0, ID) gives support to the whole of RD , and the condi-
tional pX |Z=z is strictly positive for any given z , we know that the posterior

must be a distribution over the whole of RD . Except for trivially uninter-
esting models where Z ⊥ X |θ, we also know that Zd are all dependent on
one another in the posterior. But that is really all we know (i.e., we do not
know the parametric family of posterior, and in fact whatever pdf would
describe it we probably have never expressed and named it in the past).



Neural Variational Inference

Variational Inference

We can lowerbound an intractable marginal

log p(x |θ) ≥
ELBOx (λ,θ)︷ ︸︸ ︷

Eq(z|x,λ) [log p(x , z |θ)] + H (q(z |x , λ))

= Eq(z|x,λ) [log p(x |z , θ) + log p(z)] + H (q(z |x , λ))

= Eq(z|x,λ) [log p(x |z , θ)]− KL (q(z |x , λ) || p(z))

And estimate parameters that maximise the bound

arg max
θ,λ

Eq(z|x ,λ) [log p(x |z , θ)]− KL (q(z |x , λ) || p(z))

As we get to choose q(z |x , λ), we can pick it such that

MC estimation of Eq(z|x ,λ) [log p(x |z , θ)] is possible

and perhaps KL (q(z |x , λ) || p(z)) is known in closed form
true for exponential families

Deep Learning 2 @ UvA Continuous LVMs 15 / 59

We have already developed a technique to deal with intractable marginals,
namely, variational inference.

• We shall introduce an approximate posterior q(z |x , λ) which is
independently parameterised and tractable (we know how to sample
from it and we can assess the density of samples). This
approximation can be used to obtain a lowerbound on the evidence
(ELBO).

• We then optimise the ELBO with respect to our choice of q(z |x , λ),
in a certain tractable parametric family, and p(x , z |θ), also in a
certain parametric family.

• We then approximate expectations via sampling from the tractable
approximate posterior.
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Neural Variational Inference

Document Model - Approximate Posterior

Inference model

Z |λ, x ∼ N (µ(x ;λ), diag(σ2(x ;λ)))

z

x θ

n

λ

Designing the inference network

s =
n∑

i=1

Exi

h = tanh(M1s + c1)

µ(x ;λ) = M2h + c2

σ(x ;λ) = softplus(M3h + c3)

λ = {E ,M3
1 , c

3
1}
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VI (due to KL) imposes a support constraint on Z |λ, x : we need
supp(q(z |x , λ)) ⊆ supp(p(z |α)), thus for a prior over RD , a Gaussian
approximation is a valid choice.

The choice on the slide is a product of D independent Gaussians (see the
diagonal covariance matrix). This is a mean field assumption! That is, in
the posterior approximation we assume that Zd ⊥ Zd′ |x for d 6= d ′.

For an arbitrary choice of pX |Z=z and pZ , we have no clue what the true
posterior family really is. This is unlike the mixture model, where the
posterior was a Categorical distribution (whose parameter was tractable to
compute), and unlike the latent binary factor model, where the posterior
was a Gibbs distribution (whose parameter was intractable).

A Gaussian is just convenient (as we shall see) and, beyond respecting the
support constraint, it’s not really motivated by the choice of prior

Any parameterisation will do, as long as we predict valid Gaussian parame-
ters. For example: embed words, average them, and predict locations and
scales using a shared hidden layer, they each take an affine transformation,
but the scales are softplus-activated for strict-positivity.
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but the scales are softplus-activated for strict-positivity.
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z

x θ

n

λ

Designing the inference network

s =
n∑

i=1

Exi

h = tanh(M1s + c1)

µ(x ;λ) = M2h + c2

σ(x ;λ) = softplus(M3h + c3)

λ = {E ,M3
1 , c
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VI (due to KL) imposes a support constraint on Z |λ, x : we need
supp(q(z |x , λ)) ⊆ supp(p(z |α)), thus for a prior over RD , a Gaussian
approximation is a valid choice.

The choice on the slide is a product of D independent Gaussians (see the
diagonal covariance matrix). This is a mean field assumption! That is, in
the posterior approximation we assume that Zd ⊥ Zd′ |x for d 6= d ′.

For an arbitrary choice of pX |Z=z and pZ , we have no clue what the true
posterior family really is. This is unlike the mixture model, where the
posterior was a Categorical distribution (whose parameter was tractable to
compute), and unlike the latent binary factor model, where the posterior
was a Gibbs distribution (whose parameter was intractable).
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Neural Variational Inference

Document Model - ELBO

Generative model

Z ∼ N (0, ID)

Xi |Z = z ∼ Cat(f (z ; θ)︸ ︷︷ ︸
=π

) for i = 1, . . . , n

Inference model

Z |X = x ∼ N (µ(x ;λ)︸ ︷︷ ︸
=u

, diag(σ2(x ;λ)︸ ︷︷ ︸
=s2

))

z

x θ

n

λ

ELBO optimisation

arg max
λ,θ

EN (u,s2) [
∑n

i=1 log πxi ]− KL
(
N (u, s2) || N (0, I )

)︸ ︷︷ ︸
−1
2

∑D
d=1(1+log(s2d)−u2d−s

2
d)
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We then seek a choice of λ and θ that optimises a lowerbound on the
log-evidence, the ELBO.

Note how the KL divergence from the prior to the approximate posterior
is known in closed-form. That is generally the case when the prior and the
approximate posterior are in the same exponential family.



Neural Variational Inference

Parameter Estimation

We need gradients for parameter updates

∇λ,θ ELBOx(λ, θ)

And if we cannot get exact gradients, an unbiased gradient estimator

∇λ,θ ELBOx(λ, θ) = E[∇λ,θSx(λ, θ,Z )]

is just as good, as we can use MC to estimate the gradient.
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As usual, we count on gradient-based optimisation. Thus we will have to
look into how to estimate gradients.

∇λ,θSx(λ, θ,Z ) is called a gradient estimator.

Sx(λ, θ,Z ) is called a stochastic surrogate objective, the expected value of
its gradient ∇λ,θ is the gradient of the objective we seek to minimise.

Some stochastic surrogates have a remarkable resemblance to the objective
function we seek to optimise. For example, log p(x |z , θ), for a z sampled
from Z |λ, x , is a stochastic surrogate for the estimation of ∂

∂θ ELBOx(λ, θ).
Do you see that?

But don’t get too attached to that resemblance. For example, the score
function estimator uses a surrogate that does not resemble the ELBO as
much, even though it is used to estimate ∂

∂λ ELBOx(λ, θ).



Neural Variational Inference

Updating the generative model

∂

∂θ

Eq(z|x ,λ) [log p(x |z , θ)]−
constant wrt θ︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))



= Eq(z|x ,λ)

[
∂

∂θ
log p(x |z , θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

S

S∑
s=1

∂

∂θ
log p(x |z(s), θ) where z(s) ∼ q(z |x , λ)

Monte Carlo (MC) estimation gives us a gradient estimate with a
computation that does not depend on the size of Z.
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Updating the generative model is actually rather simple

• The second term is constant in this case, and poses no challenge.
Even if it depended on θ, that is, if the prior depended on θ, as long
as we can evaluate the KL term, autodiff would differentiate it for
us. The first term seems less obvious, after all, we cannot solve the
expected value in closed-form (it would take a sum over z ∈ Z, and
avoiding this sum is the whole point).

• But note that the distribution we take expectations with respect to
is the inference model q(z |x , λ), which does not depend on θ. As
derivatives are linear, we compute an expected derivative instead of
differentiating an expected value.

• Expected values are great for we know how to estimate them
without bias. More often than not we use a single sample per
observation.
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Neural Variational Inference

Updating the inference model

∂

∂λ

Eq(z|x ,λ) [log p(x |z , θ)]−
analytical︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))



=
∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]− ∂

∂λ
KL (q(z |x , λ) || p(z))︸ ︷︷ ︸
analytical computation

The first term again requires approximation by sampling, but the measure
of integration depends on the parameter λ.
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Updating the inference model is not as simple

• The KL term is tractable to assess, thus autodiff will handle it, and
we don’t need to worry about the exact form of the gradient.

• The first term requires an intractable sum over z ∈ Z which we
mean to avoid. Unfortunately this time we cannot simply ‘push’ the
derivative inside as the expectation is taken w.r.t. q(z |x , λ), which
clearly depends on λ.
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Neural Variational Inference

Score Function Estimator

For discrete LVMs, we developed the score function estimator. Can we do
the same here?

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=

∫
∂

∂λ
(q(z |x , λ)) log p(x |z , θ)dz

=

∫
q(z |x , λ)

∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)dz

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!
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It turns out we’ve already seen this form of gradient when we derived
the general form of ∇θ log p(x |θ) for discrete LVMs. Fortunately, the
identities we used still hold for continuous rvs. Technically we are being a
little sneaky: there are a few conditions for differentiation under the integral
sign (the mathematically inclined may want to check Leibniz integral rule),
luckily our application satisfies those.

• We can use the log identity for derivatives (i.e., f ′ = f (log f )′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.
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Neural Variational Inference

SFE and its variance

We can now build an MC estimator

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
MC
≈ 1

S

S∑
s=1

log p(x |z(s), θ)
∂

∂λ
log q(z(s)|x , λ)

where z(s) ∼ q(z |x , λ)

Unfortunately, this one has high variance. But, as it turns out, we can
do a lot better!
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And, as always, expected gradients can be estimated free of bias via MC.

The high variance of the score function estimator can be intuitively justified
by the fact that the learning signal (i.e., the part of the estimator that
interacts directly with the observed data) cannot influence the direction of
the gradient, rather only its magnitude.

By the way, this is the complete stochastic surrogate objective (for z sam-
pled from Z |λ, x :

log p(x |z , θ)−
analytical︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))− log p(x |z , �θ)︸ ︷︷ ︸
‘detached’

log q(z |x , λ)

Can you see that ∇λ,θ gives us the correct partials?
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Variational Auto-Encoder

Inference Network Gradient

We need to re-express the gradient as an expected value, but the measure
of integration depends on λ

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

What if we could re-express q(z |x , λ) in terms of some other distribution
that does not depend on λ?

Something like

1 Sample u from a fixed noise source

2 Apply a differentiable transformation T −1(u) and get Z |λ, x
T −1 can depend on any other quantity already available (e.g., λ, x)
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Let’s think about this proposal. Say we have a univariate random variable
Z , it could be Z ∼ N (ψµ, ψσ2) or Z ∼ Gamma(ψα, ψβ) amongst many
other options, say the parameters are predicted by some NN: e.g., ψ =
g(x ;λ). We are looking for something like this:

U ∼ U(0, 1)

T −1(U) ∼ Z |ψ

This would make the path from the parameters λ to a sample z deter-
ministic and differentiable given some uniform draw u ∈ [0, 1]. If we find
such ‘magical’ transformation that absorbs parameters of a distribution,
then ∂

∂λEq(z|x,λ)[log p(x |z , θ)] = ∂
∂λEU(0,1)[log p(x |z = T −1(u|x , λ), θ)]

and suddenly ∂
∂λ could be ‘pushed’ inside as it happened for ∂

∂θ .

Do you know of any such transformation for univariate rvs?

Asking differently, do you know what transformation T of Z has the prop-
erty that T (Z ) ∼ U(0, 1)?



Variational Auto-Encoder

Reparameterised gradients: Inverse cdf

The cdf F (z |ψ) of a univariate rv Z |ψ is a transformation that by
definition meets our goals. That is, no matter the distribution of Z |ψ,

F (Z |ψ) ∼ U(0, 1)

and conversely, for U ∼ U(0, 1)

F−1(U|ψ) ∼ Z |ψ

Moreover, the cdf is by definition differentiable w.r.t. z ∈ Z, and often
also differentiable w.r.t. the parameters ψ of the pdf of the rv. Then,

∂

∂ψ
EZ |ψ[`(z)] =

∂

∂ψ
EU(0,1)[`(F−1(u|ψ)︸ ︷︷ ︸

=z

)]

= EU(0,1)
[
∂

∂ψ
`(F−1(u|ψ))

]
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The cumulative distribution function (cdf) of a continuous rv is a mono-
tonically increasing function, and therefore invertible.

Its inverse F−1(u|ψ) is known as the quantile function.

• We can re-parameterise expectations. This is known as the law of
the unconscious statistician. There’s a lot of careful maths going on
behind it, if you are curious, check the appendix.

• Which allows us to re-express the gradient as an expected value.

• Chain rule requires the derivative of the sample z w.r.t. ψ:

EU(0,1)
[
∂
∂z `(z) ∂

∂ψF
−1(u|ψ)

]
This looks great. However, it’s very easy to find examples of univariate
continuous rvs for which the cdf and/or its inverse are unknown. Thus we
cannot always count on this method. Moreover, we are often interested
in multivariate variables, which would require some form of special treat-
ment.
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F (Z |ψ) ∼ U(0, 1)

and conversely, for U ∼ U(0, 1)

F−1(U|ψ) ∼ Z |ψ

Moreover, the cdf is by definition differentiable w.r.t. z ∈ Z, and often
also differentiable w.r.t. the parameters ψ of the pdf of the rv. Then,

∂

∂ψ
EZ |ψ[`(z)] =

∂

∂ψ
EU(0,1)[`(F−1(u|ψ)︸ ︷︷ ︸

=z

)]

= EU(0,1)
[
∂

∂ψ
`(F−1(u|ψ))

]
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The cumulative distribution function (cdf) of a continuous rv is a mono-
tonically increasing function, and therefore invertible.

Its inverse F−1(u|ψ) is known as the quantile function.

• We can re-parameterise expectations. This is known as the law of
the unconscious statistician. There’s a lot of careful maths going on
behind it, if you are curious, check the appendix.

• Which allows us to re-express the gradient as an expected value.

• Chain rule requires the derivative of the sample z w.r.t. ψ:

EU(0,1)
[
∂
∂z `(z) ∂

∂ψF
−1(u|ψ)

]
This looks great. However, it’s very easy to find examples of univariate
continuous rvs for which the cdf and/or its inverse are unknown. Thus we
cannot always count on this method. Moreover, we are often interested
in multivariate variables, which would require some form of special treat-
ment.
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Reparameterised gradients: Location-scale families

A location-scale family is a group of two-parameters (known as location
and scale) continuous distribution such that any member Z |µ, σ of the
family can be mapped to and from the standard member φ(ε) via a
standardisation procedure:

Z − µ
σ
∼ φ(ε)

µ+ εσ ∼ Z |µ, σ

Location-scale families include multivariate distributions. Then, for Z |u,C

C−1(Z − u) ∼ φ(ε)

u + Cε ∼ Z |u,C
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The cdf is not the only way to absorb parameters. Every location scale
family has a standard member and every member of the family can be
mapped to the standard member via an affine transformation.

Examples: Gaussian (as we use in our running example), Gumbel, Laplace,
Logistic, Cauchy, Uniform, Student’s t. Also their multivariate versions.
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Gaussian rvs and the reparameterisation trick

Recall we made a mean field Gaussian assumption

Z |λ, x ∼ N (µ(x ;λ), diag(σ2(x ;λ)))

Then we have

T (z , λ; x) =
z − µ(x ;λ)

σ(x ;λ)
= ε ∼ N (0, I)

and conversely, for ε ∼ N (0, I ), we have:

T −1(ε, λ; x) = µ(x ;λ) + σ(x ;λ)� ε = z ∼ N (µ(x ;λ), diag(σ2(x ;λ)))
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VI (due to KL) imposes a support constraint on Z |λ, x : we need
supp(q(z |x , λ)) ⊆ supp(p(z)), thus for a prior over RD , a Gaussian ap-
proximation is a valid choice.

The choice on the slide is a product of D independent Gaussians (see the
diagonal covariance matrix). This is a mean field assumption! That is,
in the posterior approximation we assume that Zd ⊥ Zd′ |x for d 6= d ′. As
we saw earlier, this is unlikely to be the case in the true posterior.

Picking a Gaussian approximation is just convenient for Gaussians can
be expressed in terms of the fixed standard Gaussian and this leads to a
convenient gradient estimator.
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Updating the inference model

=
∂

∂λ

∫
q(z |x , λ) log p(x |z , θ)dz

=
∂

∂λ

∫
φ(ε) log

p(x |

=z︷ ︸︸ ︷
T −1(ε, λ), θ)

dε

=

∫
φ(ε)

∂

∂λ

log p(x |

=z︷ ︸︸ ︷
T −1(ε, λ), θ)

dε
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So we are back to the board trying to obtain a nice gradient estimate for
the inference model.

• This time around, we will assume this differentiable and invertible
reparameterisation exists (we know it exists for location-scale
families, for example) and use the law of the unconscious
statistician instead of score function estimation.

• Which allows us to re-express the gradient as an expected value.
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Updating the inference model

Eφ(ε)

 ∂

∂λ
log p(x |

=z︷ ︸︸ ︷
T −1(ε, λ), θ)


MC
≈ 1

S

S∑
i=1

∂

∂λ
log p(x |

=z︷ ︸︸ ︷
T −1(εi , λ), θ)

where εi ∼ φ(ε)

MC
≈ 1

S

S∑
i=1

∂

∂z
log p(x |z , θ)× ∂

∂λ

=z︷ ︸︸ ︷
T −1(εi , λ)︸ ︷︷ ︸

chain rule
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As usual, we estimate expectations via Monte Carlo (MC). But see how
this time around we sample from a fixed noise source φ(ε).

• Usually, you leave all calls to chain rule to your automatic
differentiation algorithm, but sometimes it’s informative to look into
what it does. Here we see that chain rule will differentiate the
actual sample. We are effectively differentiating through the
sampling procedure! It’s a remarkable feat.

• This technique goes by a few names:

– reparameterisation trick (Kingma and Welling, 2014)
– stochastic backpropagation (Rezende et al., 2014)
– reparameterised gradient (Titsias and Lázaro-Gredilla, 2014)

It’s the key technical development in the variational auto-encoder
(VAE; Kingma and Welling, 2014).
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Derivatives of mean field Gaussian reparameterisation

For our mean field Gaussian approximation we have

T −1(ε, λ) = µ(x ;λ) + σ(x ;λ)� ε

We get two gradient paths!

one is deterministic
∂T −1(ε,λ)
∂µ(x ;λ) = ∂

∂µ(x ;λ) [µ(x ;λ) + σ(x ;λ)� ε] = 1

the other is stochastic
∂T −1(ε,λ)
∂σ(x ;λ) = ∂

∂σ(x ;λ) [µ(x ;λ) + σ(x ;λ)� ε] = ε
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Let us again check what chain rule does for us.

This is the case for every location-scale family, and it generalises as ex-
pected to the multivariate case (full-rank covariance matrix).

Can you think about any difficulties in predicting a full-rank covariance
matrix with an inference network?
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Gaussian KL

Let’s get back to the ELBO

Eq(z|x ,λ) [log p(x |z , θ)]− KL (q(z |x , λ) || p(z))

and handle the KL term.

For a standard Gaussian prior and a mean field Gaussian posterior
approximation

−KL (q(z |x , λ) || p(z)) =
1

2

D∑
d=1

(
1 + log

(
σ2d
)
− µ2d − σ2d

)
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KL between two members of the same exponential family is usually known.
Sometimes it may involve terms that can only be approximated numerically,
or whose derivatives need numerical approximation, but as a general rule
our chances are better if we match exponential families.

When KL is not known, we can always see it as an expected value and use
reparameterised gradients

∂

∂λ
KL (q(z |x , λ) || p(z)) =

∂

∂λ
Eq(z|x,λ)

[
log

q(z |x , λ)

p(z)

]
= Eφ(ε)

[
∂

∂λ
log

q(z = T −1(ε, λ)|x , λ)

p(z = T −1(ε, λ))

]
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Computation Graph

x

µ σ

z

log p(x |z)

λ λ

θ

ε ∼ φ(ε)inference model

generative model KL KL
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Let’s put everything together in a computation graph

• we map an observation x to the parameters µ and σ of our
inference model, this uses an NN with parameters λ; with those we
can parameterise an affine transformation that maps samples from a
standard location-scale family to samples from the approximate
posterior;

• besides, we have our main neural network, which maps from z to
the log-probability log p(x |z , θ), this is a quantity that depends on θ;

• with µ, σ, and the prior parameter α in this case, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

The surrogate objective resembles a single-sample estimate of the ELBO:

log p(x |z = µ(x ;λ) + ε� σ(x ;λ))− KL (q(z |x , λ) || p(z |α))

Can you verify that ∇λ,θ yields the correct partials?
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the inference model;

The surrogate objective resembles a single-sample estimate of the ELBO:

log p(x |z = µ(x ;λ) + ε� σ(x ;λ))− KL (q(z |x , λ) || p(z |α))

Can you verify that ∇λ,θ yields the correct partials?
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Let’s put everything together in a computation graph

• we map an observation x to the parameters µ and σ of our
inference model, this uses an NN with parameters λ; with those we
can parameterise an affine transformation that maps samples from a
standard location-scale family to samples from the approximate
posterior;

• besides, we have our main neural network, which maps from z to
the log-probability log p(x |z , θ), this is a quantity that depends on θ;

• with µ, σ, and the prior parameter α in this case, we can assess
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Document Model - Reparameterised ELBO

Generative Model

Prior: Z ∼ N (0, I )

Observational model: Xi |Z = z ∼ Cat(f (z ; θ))

Inference Model

Z |X = x ∼ N (µ(x ;λ), diag(σ2(x ;λ)))

z

x θ

n

λ

ELBO

Eε∼N (0,I ) [
∑n

i=1 log πxi ]− KL
(
N (u, s2) || N (0, I )

)
where u = µ(x ;λ), s = σ(x ;λ), and π = f (z = u + ε� s; θ)
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And this concludes our example VAE!

Take a moment to think about this, try to design VAEs for other types of
data. I presented the document model rather than the MNIST VAE on
purpose. I wanted you to see VAEs presented with an example that would
force you to go away from some ‘implementation shortcuts’ that can limit
your understanding of the technique and thus your ability to see it as an
extremely general building block.



Variational Auto-Encoder

A stochastic auto-encoder with a KL regulariser, right?

You could describe it like that. It more or less covers what you should
implement, but avoid taking much more than that from it.

Let’s see

The stochasticity is not arbitrary, it follows from the need to estimate
the log evidence.

The fact that there’s something that looks like an auto-encoder is
accidental, it just so happens that posteriors condition on data, and
observational models generate data.

The regulariser is not a post-hoc patch to the objective, but it’s an
integral part of it.
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The stochasticity comes from a choice of approximate posterior, and we
want one which is differentiably reparameterisable, and whose support is
contained in the support of the prior.

The objective is indeed a bound on the logarithm of the marginal probability
mass/density of the observation.

The ‘KL regulariser’ is not optional. It fell off of the derivation of the
ELBO and removing it or scaling it is a heuristic that may or may not lead
to something meaningful.

For example, there are alternative variational objectives that are motivated
from a view other than bounding the log evidence, those will have objec-
tives other than the ELBO, and they are supported from the point of view
of their respective theories. Sometimes, you can find theoretical support
to certain strategies that manipulate that KL term, but freely manipulat-
ing it without any theoretical support for it being ‘a regulariser of some
stochastic auto-encoder loss’ is a void motivation.



Variational Auto-Encoder

Marginal assessments

What if we need to assess log p(x |θ) under a deep latent variable model?

For example, that is useful in language modelling and other density
estimation problems.

Importance sampling fundamental identity

log p(x |θ) = log

∫
p(x , z |θ)dz

= log

∫
w(z)

w(z)
p(x , z |θ)dz

= logEw(z)

[
p(x , z |θ)

w(z)

]
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• We start from the definition of the marginal and introduce an
importance distribution.

• For example, we could use our already trained inference model
w(z) := q(z |x , λ).

• This gives us an expectation, which we can estimate via MC using a
large sample. The result is a stochastic lowerbound, and it gets
tighter the more we sample, and it is tight in the limit.

This result is closely-related to the ELBO and can be used also for param-
eter estimation. See for example (Burda et al., 2016; Cremer et al., 2017).
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Posterior collapse

Posterior collapse

Suppose we choose to model with an autoregressive generator, e.g.,

Xi |z , x<i ∼ Cat(f (z , x<i ; θ))

We point estimate θ along with λ

where p(x , z |θ) = p(z)
∏n

i=1 p(xi |z , x<i , θ)

if we pick θ such that Xi ⊥ Z | X<i , then

p(z |x , θ) =
p(z)

∏n
i=1 p(xi |z , x<i , θ)

p(x |θ)

=
p(z)

∏n
i=1 p(xi |x<i , θ)

p(x |θ)
=

p(z)p(x |θ)

p(x |θ)

= p(z)

the true posterior collapses to the prior
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Posterior collapse is a failure mode of maximum likelihood estimation that
also afflicts VAEs. This problem happens whether or not we employ approx-
imate inference (yes, you read it right, it can happen also with a tractable
mixture model!), and because VAEs are trained by Frequentist VI, they
also suffer from this failure mode.

It’s particularly pronounced when the observational model is sufficiently
expressive to assign high probability mass/density to the observed data.

Does it mean there’s no point to LVMs whenever we have an expressive
conditional? Not necessarily, if you go back to our motivations for LVMs
(both discrete and continuous) you will see that expressiveness is only one
of them. We still have many others: inductive bias, generalisation, trans-
parency, controllable generation, semi-supervised learning, uncertainty es-
timates.

To learn more about posterior collapse check (Chen et al., 2017; Alemi
et al., 2018). In an language modelling context, see (Pelsmaeker and Aziz,
2020).
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Posterior collapse

Strong generators

If your observational model is able to express dependencies between the
output variables (e.g. an RNN), the model may simply ignore the latent
code.

Note that though X ⊥ Z (or Xi ⊥ Z | X<i )∏n
i=1 p(xi |x<i , θ) still is an exact factorisation of p(x |θ).

We call such models strong generators.
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Posterior collapse

Diagnosing posterior collapse

Fact: the rate R = EX [KL (q(z |x , λ) || p(z))] is an upperbound on
I (X ;Z |λ)

if KL (q(z |x , λ) || p(z)) is close to 0 for most training instances, then
I (X ;Z |λ) is 0 or negligible;

greedy decoding arg maxxi log p(xi |z , x<i ) from a prior sample
z ∼ p(z) is deterministic;

this does not mean ancestral samples from p(x |z , θ) will be bad

I (X ;Z |λ) =
∫ ∫

q(x , z |λ) log q(x,z|λ)
q?(x)q(z|λ)dxdz and q(x , z |λ) = q?(x)q(z |x , λ).

Deep Learning 2 @ UvA Continuous LVMs 37 / 59

An excellent further reading here is (Alemi et al., 2018).
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Posterior collapse

KL scaling

Gradually incorporate the KL term into the objective

Eq(z|x ,λ) [log p(x |z , θ)]− β KL (q(z |x , λ) || p(z))

where β starts at 0 and goes to 1 after a number of steps.

This sometimes helps reach better local optimum, but there are not
guarantees. In fact, oftentimes, soon after we reach 1, the posterior
collapses again.

Deep Learning 2 @ UvA Continuous LVMs 38 / 59

KL scaling, a.k.a. ‘KL annealing’, was proposed by Bowman et al. (2016).

βVAE (Higgins et al., 2017) extends the idea.
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Posterior collapse

Free bits

Another strategy is to promote the posterior to deviate a bit from the prior
by not penalising for the first few nats of information:

Eq(z|x ,λ) [log p(x |z , θ)]−max(r ,KL (q(z |x , λ) || p(z)))

where r ≥ 0 is known as “free bits”

This is an attempt to promote solutions where R ≥ r
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Free bits was presented by Kingma et al. (2016). For an alternative version
known as soft free bits see (Chen et al., 2017).

For a view of free bits related to constraints on the ELBO, see Pelsmaeker
and Aziz (2020). Check the citations therein for more on posterior collapse.



Posterior collapse

Attention!

But note that if we scale down the KL term permanently, or allow too
many free bits, then the conditional p(x |z , θ) will over-specialise to
samples from the approximate posterior q(z |x , λ). This can lead to bad
generalisation and/or poor samples when generating from the prior.
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Extensions

Predictors

Suppose we are modelling some data points (x , y) ∈ D conditionally. We
can introduce a latent variable z , just like we did in the case of discrete
LVMs.

p(y |x , θ) =

∫
p(z |x , θ)p(y |x , z , θ)dz

In that case the ELBO becomes

Eq(z|x ,y ,λ) [log p(y |x , z , θ)]− KL (q(z |x , y , λ) || p(z |x , θ))

The KL term now contributes to updating both λ and θ.
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For the conditional p(z |x , θ) we may choose Z |θ, x ∼ N (µ(x ; θ), σ2(x ; θ)).

Check for example variational NMT (Zhang et al., 2016).

And, of course, we can also model paired observations with a joint model.
That is, p(x , y |θ) =

∫
p(z)p(x |z , θ)p(y |x , z , θ)dz . Check for example,

auto-encoding variational NMT (Eikema and Aziz, 2019).



Extensions

Some extensions

Richer priors (Tomczak and Welling, 2018; Pelsmaeker and Aziz,
2020)

Richer posteriors (Kingma et al., 2016; Huang et al., 2018; De Cao
et al., 2020)

Spherical distributions (Davidson et al., 2018; De Cao and Aziz, 2020)

hierarchical models (Fraccaro et al., 2016; Schulz et al., 2018; Ziegler
and Rush, 2019)
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Extensions

Applications (in NLP)

A non-exhaustive list of examples

language modelling (Bowman et al., 2016; Xu and Durrett, 2018)

word representation (Rios et al., 2018; Bražinskas et al., 2018)

machine translation (Zhang et al., 2016; Schulz et al., 2018; Eikema
and Aziz, 2019)

syntactic parsing (Corro and Titov, 2018; Kim et al., 2019; Corro and
Titov, 2019)

semantic parsing (Lyu and Titov, 2018)

generation of inflected wordforms (Zhou and Neubig, 2017; Ataman
et al., 2020)

interpretability (Bastings et al., 2019; Cao et al., 2020)

question answering (Deng et al., 2018)
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Extensions

Variational Autoencoder

Advantages

Backprop training

Easy to implement

Posterior inference possible

One objective for both NNs

Amortised inference

Drawbacks

Discrete latent variables are not possible

Optimisation may be difficult with several latent variables
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